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Abstract 

Three-dimensional electron diffraction intensity data 
have been collected for the metastable alloy phase 
AI,,,Fe by a precession technique. The structure model 
has been derived by Patterson and Fourier calculations 
and by the direct method using either maximum 
entropy and likelihood or the tangent formula; both 
were based on the kinematical scattering approxima- 
tion. Energy-filtered convergent-beam profiles for 
reflections along two systematic rows h00 and hhO were 
used to determine the corresponding structure factors; 
these were introduced in a dynamical scattering 
correction procedure for all hk0 structure factors. The 
tetragonal AlmFe structure (a = 8.84, c = 21.6 ,~, space 
group I[12m) with 90 A1 and 20 Fe atoms can be 
described by ten-coordinated Fe or by a distorted CsCI- 
type network with vacancies. 

1. Introduction 

Aluminium alloys contain a variety of stable and 
metastable A1-Fe-Si intermetallic phases as primary 
particles, secondary particles and precipitates. For many 
of the phases, the crystal structure is unknown, mainly 
due to lack of single crystals suitable for X-rays. This 
can be a problem even for stable phases: owing to 
extensive faults, the crystal structure of the commonly 
occurring alloy phase fl-Aln.sFeSi could be determined 
only by a combined electron diffraction and single- 
crystal X-ray effort (RCmming et aL, 1994). For meta- 
stable phases like mlmFe , which occur as gm-size 
particles in' an aluminium matrix, usually together with 
other intermetallic phases, electron diffraction appears 
as the only viable alternative for crystal structure 
determination. 
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AlmFe was first reported by Miki et al. (1975) and is 
commonly found as primary particles in aluminium 
alloys cast in industrial processes at high cooling rates. 
Lattice parameters of the body-centred tetragonal unit 
cell are a -- 8.84, c = 21.6 A, m = 4.2-4.4 (Westengen, 
1982). An attempt to derive a crystal structure was 
made by Skjerpe (1988). From qualitative considera- 
tions of electron diffraction patterns and high-resolu- 
tion images, he suggested a tentative model with 20 Fe 
and 90 AI atoms in the space group I4/mmm, which was 
proposed from convergent-beam patterns. He also 
reported extensive faults in the crystals, especially on 
(110) planes. However, with a unit-cell content of 
approximately 110 atoms and no short axis, a structure 
solution must be based on three-dimensional intensity 
data, which had to be collected from several precipitate 
crystals of moderate thickness. In electron diffraction, 
such data are expected to be strongly influenced by 
dynamical scattering effects. No well established 
procedure existed that could be applied directly to this 
kind of problem. We have therefore explored different 
electron diffraction techniques: selected-area (SAD) 
spot patterns; precession patterns (Vincent & Midgley, 
1994); unfiltered and energy-filtered CBED patterns; 
and applied different calculation schemes for the 
structure solution. The main structure result was 
derived by adapting traditional crystallographic 
methods within the kinematical approximation. Dyna-  
mical calculations applied to CBED measurements 
(Cheng et al., 1996) served as a confirmation and were 
also used to improve some of the experimental data by 
a procedure described by GjCnnes et al. (1998). The 
resulting structure solution is discussed in relation to 
other phases in the aluminium-iron system. 

Electron crystallographic techniques have recently 
been applied succesfully to several organic and inor- 
ganic structures: by a combination of high-resolution 
images and diffraction intensities (e.g. Weirich et aL, 
1996; Andersen et al., 1998; Zou et al., 1993) or by 
treating diffracted intensities by mathematical proce- 
dures taken from X-ray crystallography, see e.g. Dorset 
(1995). The present work differs somewhat from these 
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studies by being based on crystals of irregular shape 
and moderate thickness, which is expected to exacer- 
bate the problems associated with dynamical scattering. 

2 .  M a t e r i a l  

Material for the study was obtained from a commercial 
aluminium alloy AA5052, which had been produced by 
a pilot twin-roll caster at Hydro Aluminium as KarmOy. 
Al,,,Fe particles together with other primary particles 
present in the alloy were extracted by the butanol 
method described by Simensen et al. (1984). The 
particles were collected on a micropore filter and 
transferred to an electron-microscope grid with a holey 
carbon film, see Fig. 1. Spot patterns and some CBED 
patterns were obtained in JEOL 2000 FX and 200CX 
electron microscopes; the precession patterns were 
taken in a Philips EM430 at Bristol University, and the 
CBED profiles in a Zeiss EM912 omega energy-filter 
microscope at MPI, Stuttgart. 

The precession technique is in principle equivalent to 
the precession camera used in X-ray diffraction (see e.g. 
Buerger, 1964), except that the crystal is not precessed; 
a precession motion is instead applied synchronously to 
the incident electron beam above and to the diffraction 
pattern below the specimen. Such motions can be 
produced with the aid of the tilting coils which are 
standard in modem electron microscopes. The preces- 
sion technique has some important advantages over the 
usual selected-area spot pattern: the intensity of each 

3 .  E l e c t r o n  d i f f r a c t i o n  

3.1. Spot patterns and precession patterns 

Typical selected-area spot patterns are reproduced in 
Fig. 2. As a first attempt, three-dimensional electron 
diffraction intensity data were collected from a series of 
spot pattern photographs taken in a microdiffraction 
mode. Photometered intensities were combined into a 
da ta  set that included 185 unique reflections inside 
d = 1.3 ,A. Patterson projections and sections calcu- 
lated from these data indicated that they did indeed 
contain information about the structure, see Figs. 
3(a),(b). However, the precession technique invented 
by Vincent & Midgley (1994) seemed much better 
suited for acquiring three-dimensional intensities from 
such specimens. A new set of intensity data was 
therefore collected by the equipment at Bristol 
University. 

• • • • • 

• • • • 

" • • • • , 

• . . . • 

• • • O • • • 

• • • • • • 

(a) 

Fig. 1. Dark-field image of an extracted AimFe particle. 
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(b) 
Fig. 2. Selected-area diffraction patterns taken as projections along (a) 

[111] and (b) [001]. 
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reflection is the result of integration through the Bragg 
angle in much the same way as in single-crystal X-ray 
diffraction. Data will extend further out in the zone. 
Dynamical effects will be reduced by the tilt off the 
zone axis; see the schematic 'still' representation of the 
beam configuration in Fig. 4. Thickness oscillations in 
particular will be damped considerably by the inte- 
grating motion. As a consequence, we expect the 
precession intensity data to be more kinematic like than 
SAD spot intensities, especially when the crystal is not 
very thin. Dynamical scattering calculations will on the 

o t h e r  hand be more complicated since the intensity will 
be a sum of contributions along the precession circle. It 
was decided to treat the intensity data as kinematical. 

Precession patterns from eight different projections, 
[111], [0011, [100], [1101, [120], [140], [302], [301], two 
exposures from each, were recorded on film (Fig. 5). 
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Fig. 3. Pa t t er son  m a p s  ca lculated  f r o m  spot  pat tern  intensit ies .  (a) 
[001] project ion;  (b) (u, v) sec t ion  for  w = 0. 

The improvement in comparison with traditional spot 
patterns taken at a comparable thickness was apparent. 
The diffraction photographs were processed through 
several stages in order to produce a three-dimensional 
data set. The negatives were placed on a light box. The 
optical density was recorded by a CCD camera and 
transferred to an imaging analysis system (Kontron 
Vidas 25) in a 512 x 512 pixel size and converted to 
intensities with the aid of a grey-scale calibration curve 
obtained by a Set of time exposures in the electron 
microscope. The intensities in rows of reflections were 
read along a line one pixel wide and integrated after 
subtraction of background. The whole procedure is 
described in detail elsewhere (Berg e t  al . ,  1998). 
Equivalent reflections in the projection were averaged 
and a geometrical correction factor analogous to the 
Lorentz factor in X-ray diffraction was applied to the 
intensities (Vincent & Midgley, 1994), viz~f 

/co ~ = I sin e where cos e = (g2 _ 2 n k h ) / 2 K G , , ,  

where g,, is the reciprocal-lattice vector in the Laue 
zone n: g,, - -  go + nh" h is the reciprocal-lattice spacing 
perpendicular to the zero layer and k is the wave 
number of the incident electron. K is the transverse 
component of k and is related to the precession angle q) 
by K -- k tan q). 

Reflections outside a sphere of radius corresponding 
to d = 0.66 A and reflections in the second- and higher- 

t During the course of this work, a slightly different correction factor 
was derived by one of us (GjCnnes, 1997). 
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Fig. 4. Schematic representation of beams at one instant on the 
precession circle used in [001] projection. The position of the direct 
beam is marked by an open circle, the zone axis by a square. 
During the precession motion, the direct beam moves around the 
Lane circle (ZOLZ).  (In an equivalent description, the Laue circle 
is rotated around the central beam.) 
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order Laue zones in the [001] projection were removed 
from the data. About 500 measured unique reflections 
were included in this procedure. Inside d -- 1 ,~, 285 of 
the reflections (95%) were recorded and supplemented 
with the remaining intensities from the spot patterns 
mentioned above. 

3.2. Merging to three-dimensional data 

Intensity data from the eight projections were 
merged into a single three-dimensional data set. This 
was achieved by means of the intensity ratios t~m, 
between different projections as obtained from 
common rows of reflections. By disregarding effects of 
dynamical scattering (especially non-systematic dy- 

namical scattering), we could determine 28 such ratios: 

(x,,,,, = ( l /n )  ~ arg,,,,, 
g 

from one to six reflections, g, in the common row. 
Scaling factors A,, for the eight projections were then 
calculated by a least-squares method. A linear proce- 
dure was found to be inadequate and a non-linear least- 
squares procedure based on the Levenberg-Marquard 
method (Press et al., 1986) was adapted. This merger is 
seen as the most uncertain step in the present experi- 
ment. An estimate of the error in the intensities can be 
obtained from reflections that are included in several 
projections. From 13 reflections appearing in four 
projections, an average standard uncertainty of 36% in 
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Fig. 5. Precession photographs taken in the eight projections (a) [11i], (b) [001], (c) [010], (d) [li01, (e) [120], ( f )  [1~,0], (g) [302], (h) [30i], 
reproduced as printouts from the CCD camera. Modulations along the c* axis are seen most clearly in [010] projection. 
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Table 1. Absolute structure factors in ~ - 2  for hO0 and 
hhO reflections obtained from filtered CBED profiles 

h00 values t aken  f rom Cheng  et al. (1996). 

S T R U C T U R E  M O D E L  F O R  THE P H A S E  AlmFe 

U2oo = -0 .01191 (31) U11o = +0.00290 (45) 
U4oo = +0.01592 (44) U220 = -0 .00199  (23) 
U6oo = +0.01275 (16) U33o = +0.03872 (9) 
Usoo = -0 .00653  (72) U44o = +0.00750 (34) 
Ulo, O,o = +0.00359 (33) [/550 = +0.00773 (107) 
Ul/,O,O = -0 .00135  (18) U66o = +0.00226 (51) 
U14,o,o = -0 .00214  (31) U77o = +0.00158 (27) 

U~o = +0.00514 (40) 
U99o = +0.00300 (18) 
u10,10,0 = +0.00140 (11) 
u11,11,0 = +0.00210 (8) 

procedure based on dynamical scattering calculations. 
Details of the procedure are given by Cheng et al. 
(1996). At  first, a two-beam-like profile was fitted to a 
strong reflection in the row; more profiles, beams and 
structure factors were gradually added in the calcula- 
tions. The [001] projection is centrosymmetric (see 
below) and different sign combinations were tried 
during the process, which led to a unique answer. In the 
present work, this technique has been extended to 
include also hhO (h = 1 to 11). The structure-factor 
results summarized in Table 1 were used to check the 
models derived from the precession data and in a late 

the intensities was obtained. Non-systematic dynamical 
effects were considered to be a major source of error. In 
order to reduce this error, an alternative scaling 
procedure was adopted at a later stage. The dense [00/] 
was emphasized as a common row. The dynamical 
effects in a dense row are expected to be dominated by 
systematic interactions along the row and hence to be 
less dependent on the actual projection. Four of the 
eight projections could then be scaled directly by using 
the ot,,,,,'s for which [00/] is the common row; the 
remaining projections were scaled to these four by 
using the c~,,,,, with the lowest standard deviations. The 
average standard deviation for the same 13 reflections 
as above was then reduced to 27%. Both three- 
dimensional sets were used in the crystallographic 
calculations. 

3.3. Convergent-beam electron diffraction 

Several CBED-based techniques were applied in 
order to obtain supplementary information about the 
structure. Examples of patterns taken in order to check 
the space-group symmetry are shown in Fig. 6. Patterns 
with the beam close to the tetragonal axis confirmed the 
projected 4m symmetry, indicating at least one vertical 
mirror. The two mirrors were tested by tilting about 
[110] and [100] axes, respectively. The diagonal (110) 
mirror seemed well confirmed, whereas the (100) mirror 
appeared less certain, see below. Quantitative structure- 
factor information can be obtained from intensities 
integrated across high-order lines in CBED patterns 
(Taft¢-& Metzger, 1985; Gj~nnes & B~e, 1994; Vincent 
et al., 1984) and especially from one- or two-dimen- 
sional intensity profiles in energy-filtered CBED 
patterns, which have been applied to refinement of 
parameters or structure factors in known structures 
with small unit cells, see e.g. Bird & Saunders (1992); 
Spence (1993); Tsuda & Tanaka (1995). Cheng et al. 
(1996) have extended the latter technique to ab initio 
determination of structure factors in a systematic row. 
From energy-filtered CBED intensity profiles of the 
h00, h = 2 to h = 14, structure-factor amplitudes and 
signs for AI,,,Fe were obtained by means of an iterative 

(a) 

(b) 
Fig. 6. CBED patterns (a) along [001] and (b) tilted around [110]. 
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stage as input  in a dynamical  correction procedure  
d e v e l o p e d  by GjCnnes et al. (1998) for hkO precession 
intensities. 

4. Calculations and interpretations 

4.1. Patterson calculations and space-group assignment 

As a first step in the structure analysis, a series o f  
Pat terson maps were calculated from the three-dimen-  
sional intensi ty data as project ions along the a and c 
axes and as uv sections at different heights w. Examples  
are shown in Fig. 7. The six most  p rominent  peaks are 
listed in Table 2. The very strong peak at (0, 0, 0.30) is 
noted.  The Pat terson sections also revealed salient 
information concerning the space-group symmetry:  the 
uvO map (Fig. 7b) is not  consistent  with the 4mm three-  
dimensional  symmetry  that  Skjerpe (1988) had assumed 

Table 2. Strongest peaks in Patterson maps (zero peak is 
100) 

u v w Height 

1 0.50 0.50 0.20 50 
2 0.37 0.00 0.15 28 
3 0.50 0.50 0.10 24 
4 0.37 0.37 0.00 23 
5 0.50 0.13 0.05 14 
6 0.37 0.37 0.30 14 

from C B E D  pat terns  (see also Skjerpe et al., 1987). The 
strong peak at (0.37, 0.37, 0) fits well with the diagonal  
mirror. But  there  is no corresponding vector that  would 
relate to the (100) mirror.  From our C B E D  pat tern,  we 
were satisfied that  4ram projected symmet ry  must  be 
correct, see above. There  is no evidence of a screw axis; 
it was therefore  concluded that  the fourfold axis must  
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Fig. 7. Patterson maps: (a) [001] projection; (b) (u, v) section for w = 0; (c) (u, w) section for v = 0. 
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be an inversion axis combined with the diagonal mirror. 
!I7~2m then remains as the only possibility and was 
therefore assigned as the space group. We knew from 
other experience that the three-dimensional mirror 
symmetry can be difficult to ascertain or disprove by 
CBED patterns in crystals containing faults, see 
Rcmming et aL (1994); it may not be surprising that 
intensity information had to be invoked in order to 
arrive at the correct space group. 

The strongest Patterson peaks can then be accounted 
for by three groups of atoms, around the 8(i) Wyckoff 
positions listed in Table 3. If each of these groups were 
centred about an Fe atom, this would mean 24 Fe atoms 

- in the unit cell, whereas the reported composition of the 
phase indicates the number of Fe atoms to be 20-21. 
However, it was decided to attempt to build a structure 
based on Fe atoms surrounded by A1 atoms at two or 
three of these positions, with I2~2m as the space group. 

4.2. Fourier syntheses 

From these models, we could calculate structure- 
factor signs and phases, with the aim of locating the 
aluminium atoms in Fourier maps. Since the space 
group is non-centrosymmetric, this Fourier approach 
based on the present kind of data has its limitations. But 
the symmetric projections, in particular [001], showed 
some distinct and stable features. Prominent peaks 
appeared at the three (x, y) positions marked A, B and 
C in the [001] projection (Fig. 8a). A number of Fourier 
sections normal to the z axis were calculated in order to 
locate the aluminium atoms. An example is shown in 
Fig. 8(b) at z = 0.28. The peak at a B-type projected 
position (0.45, 0.20, 0.28) together with the symmetry- 
related position at the height z = 0.22 is seen to form a 
characteristic buckled pentagonal net. Two other B 
positions were found, these indicate a tenfold coordi- 
nation polyhedron around the Fe atom, as found in 
other aluminium-rich intermetallic phases with iron or 
manganese, in particular A16Mn/A16Fe (Walford, 1965) 
and f l -A14 . sFeS i  (Rcmming et aL, 1994). Chemically 
reasonable structure models with such polyhedra 
around Fe atoms at the diagonal mirror, 8(i), and joined 
by edges and comers could then be constructed. 
Intensity calculations from these models reproduced 
the strong reflections. However, R values calculated for 
different projections were generally around or above 
50% and the question remained whether the 20 Fe 
atoms could be accommodated statistically on the three 
8(i) positions listed in Table 3 or by adding a fourfold 
Fe positio n at the 71 axis. 

4.3. Direct methods: maximum entropy and likelihood, 
or the tangent formula 

A different approach to structure solution was 
a t tempted using the method of maximum entropy 
coupled with likelihood evaluation (Bricogne, 1984; 

Table 3. Possible Fe positions derived from Patterson 
peaks 

x y z 
Fel 8(i) 0.18 0.18 0.575 
Fe2 8(i) 0.18 0.18 0.275 
Fe3 8(0 0.18 0.18 0.875 

Bricogne & Gilmore, 1990) as implemented in the 
MICE computer program (Gilmore et aL, 1990). For a 
review and a detailed description of the method, see 
Gilmore (1996); for an example of the method in action 
with three-dimensional electron diffraction data, see 
Voigt-Martin et al. (1994). Both data sets were used and 
gave very similar results. In both cases, the data were 
normalized to give unitary structure factors using the 
MITHRIL  computer program (Gilmore, 1984) and 
electron scattering factors. The data were then passed 
to the MICE program. Because the data are subjected 
to such large errors, a large basis set was chosen 
comprising 20 reflections chosen as follows: 

(i) A single reflection to define the origin; the 
enantiomorph was left undefined; it was set de facto by 
the use of phase permutation. 

(ii) Five h00 reflections with phases derived from 
energy-filtered CBED measurerrfents. 

(iii) 14 reflections were given l~ermuted phases. Nine 
of these were noncentrosymmetric and given phase 
permutations of the type :tzzr/4, +3rr/4. The remaining 
five were centrosymmetric and given phases 0, zr. 

If a full factorial design was used in permutation, 
25 x 4 9 = 8 388 608 phase sets would be generated. 
Each needs to be subjected to entropy maximization 
and likelihood evaluation, so that the net calculation is 
simply not feasible. To reduce the computation, a Golay 
code was used as a source of phase permuation 
(Bricogne, 1993, 1997). This yields only 4096 phase sets, 
among these there will be at least one that ha(-at'most 
three wrong signs. Each of the 4096 phase combinations 
was subjected to entropy maximization and likelihood 
evaluation. The likelihoods were analysed using the t 
test (Shankland et al., 1993). The nine top ranked maps 
were inspected. Peak lists were in general agreement 
with the models proposed from the Patterson-Fourier 
attempt. The three peaks at the 8(i) positions which had 
been deduced from the Patterson maps were always the 
strongest, indicating that the 20-21 Fe atoms should 
indeed be distributed among these. In addition, there 
were always three prominent peaks at general 16(j) 
positions of type B in the [001] Fourier projection. The 
positions of 72 atoms (24 Fe/A1 + 48 A1) out of 
approximately 110 atoms in the unit cell appeared to be 
well established. In addition, peaks always appeared at 
the 21 axis and at one or two further 8(i) positions; the 
peak list in Table 4 is an average of 12 runs. 

Another direct-method procedure based on the 
tangent formula (Karle & Hauptmann, 1966) produced 
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Table 4. Peaks from 12 maximum-entropy peak lists; 
average positions with standard deviations of peaks 

listed among the 12 strongest peaks in all lists 

Position x 

Fel 8(i) 0.1803 (2) 
Fe2/A1 8(i) 0.1807 (9) 
Fe3/A1 8(i) 0.1839 (13) 
A14 16(]) 0.325 (3) 
A15 16(]) 0.319 (10) 
A16 16(]) 0.321 (7) 
A17 4(e) 0.000 
A18 8(i) 0.189 (3) 
A19 8(i) 0.193 (4) 
All1 4(e)t 0.000 
All2 4(e) 0.000 

y z 

0.1803 (2) 0.5749 (3) 
0.1807 (9) 0.2754 (3) 
0.1839 (13) 0.8748 (8) 
0.033 (2) 0.075 (2) 
0.045 (19) 0.373 (2) 
0.040 (7) 0.775 (3) 
0.000 0.075 (6) 
0.189 (3) 0.977 (1) 
0.193 (4) 0.172 (2) 
0.000 0.35 (2) 
0.000 0.234 (15) 

t Only in six of twelve. 

essentially the same ten peaks. After generation ol  ~2 
triplets and negative quartet invariants, the phases of 
two reflections, 1,4,17 and 057, were set to - 9 3  and 0 ° , 
respectively, to define the origin. Expanding these via 
QTAN (Langs & De Titta, 1975) produced a total of 96 
phases with a mean difference of just 20.8 ° from those 
phases calculated from the final model. This procedure 
produced essentially the same ten peaks. From these 
results, we could then construct a structure model with 
110 atoms in the unit cell, based on the Fourier peaks 
and acceptable interatomic distances. The model (Fig. 
9) can be described by ten-coordinated FeAll0 poly- 
hedra joined by edges and corners. An eightfold A1 
position at the Wyckoff position 8(g) has been added in 
order to complete the A1 polyhedron around Fel.  
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Fig. 8. Fourier maps. (a) Early [001] projection based on signs determined mainly from Fe positions; (b) (x, y) section at z ---- 0.28 showing Fe2, 
and A16 atoms forming a pentagonal network; (c) [010] projection. 



314  S T R U C T U R E  M O D E L  F O R  T H E  P H A S E  AlmFe 

C ( 

AI(8) 0.50 AI(8) 020. 0.80 AI(8) 0.50 

O © O 
AI(5} 0.22 ( ) AI(I i) 0.50 C)  AI(5) 0.78 

AI(I) 0.66 AI(I) 0.97 AI(I) 0.03 

~)AI(4) 0.00 q~) I:e( I ) 0.68 ( ~  Fe(I ) 0.32 (~  
Fe(3)JAI 0.18 AI(2) 0.20 A1(2)0 80 Fe(3)/AI 0.82 

I~)AI(2) 0.46 0 0 0  OAf(2)  0.54 

AI(6) 0 . 7 7 0  AI(9) 0.50 0 AI(6) 023 

) AI(10) 0.00 Fe(2) 0.33 I-e(2) 0.67 _ (  
O A I ( 3 ) 0 3 0  C ~  G~AI(3)0. ' )6  (,..,) 
AI(3) 0 . 5 4  AI(3) 0.0"l Aft3) 0.20 AI(3) 0.46 

~ 3  ,~, o 8oq_O c ~  
Fe(2)083 , (3) . Q-)AI(IO)0.50 Fc(2)0.17 

AfrO) 0.00 OAI(6) 0.27 0 AI(6) 0.73 
AI(2) 096 

)C~1(2) °7°  ( ~  Fe(3 )/AI 0.68 ~ )  AI(2) 0.04 O ( 
Fe(3}/AI 0.32 

Fe( 1 ) 0.18 AI(4) 0.50 F¢( I ) 0.8,~ 

AI(I ) 0.47 AI(I) 0.16 AI(I) 0.84 AI(I) 0 53 

M(8) 0.30. 0.70OAI(5) 0.71 C) AI(5) 0.29 
OAn(8) o.oo OAU(8) o.oo 

~i(l i) o.oo O Ai(5) 0.2') 0 AI(5) 0.Tn 

AI(I ) 0.53 AI(1)0 84 AI(1)0.16 AI(1) 0.47 

AI(4) 0.50 Fc(1) 0.I| 
AI(2) 0 30 Fe(3 F'AI 0.32 Fe(3)/A1068 
0 C~ ~/,,(2) o.~o C 
) All9) 0.00 AI(2) 0(M 

^1(6) 0.73 ( ~  AI(10) 0.50 OAI(6)  0.27 

Fe(2)0.17~ AI(3)0.20c)OoA,(3)O.80 (~c(2)0.8: 

AI(3) 0.46 AI(3) 0.96 AI(3) 0.04 AI(3) 0.54 

:)^,3)070 CI) ~ 3  C 
AI(I0) 0.00 Fe(2) 0.67 Fe(2) 033 

AI(6) 0 . 2 3 0  AI(9) 0 50 OAf(6)  0.77 

A,(2} 0.5 b 000 (~I)A,(2) 04, 

Fe(3)/A,0.82 AI(2)0.80 A,(2)020 l-'e(3yA,0,8 

~ )  Al(4) 0 00 I~ )  Fe{l} 032 O Fed I) 0.68 (~ 
AI([) 0.34 AI(1) 0.03 AI(1) 0.97 

hi(5) 0.78 C) AI(I I ) 0.50 O h l ( 5 )  0.22 

0 0 O -  
Af(8) 0.50 AI(8) 0.20, 0.80 AI(8) 0.50 

IV" 

I I I I I I 
0 l 2 3 4 5 

(a) 

I , , j , 
6 7 8 9 

AI( I ) 0.34 

AI(4) o 00 

AI(IO) 00o 

AI(3} 070 

A I(0) 0.00 

),I(2 ) 030 

AI( I l ) 0.00 
) 
AI(8) (1 ";0.1170 

AI12)0.70 
AI(9) ().IX) 

AI(3) 0.30 
) 

AI( 101000 

) gl(4) o.oo 

AI( l ) 066 

(b) 

(c) 

(d) (e) 
Fig. 9. Projections of the structure (a) seen along the a axis with Fe atoms as closed and AI atoms as open circles; (b) packing of FeAll0 

polyhedra around Fel  (dark) and Fe2 viewed along the c axis; (c) similarly for Fel  and Fe3; (d) and (e) similar views along the a axis. 



J. GJONNES et aL 315 

5. Confirmation of the structure. Incorporation of 
CBED results. Dynamical correction of hk0 intensities. 

Least-squares refinement 

For a confirmation of this structure model, consider first 
the CBED results listed in Table 1. The structure-factor 
amplitudes and signs obtained for the h00 and hhO 
reciprocal rows agreed well with the structure model, as 
seen by the projections onto the two rows in Figs. 10(a) 
and (b), and by a Fourier projection calculated by a 
combination of CBED and precession structure factors 
in Fig. 11 (a). (The signs for the latter are taken from the 
structure model.) From these calculations, we 
concluded that the projected structure must be essen- 
tially correct. 

As a further check, a dynamical correction procedure 
for the precession data in hkO has been developed by 
GjCnnes et al. (1998), where details are given. By 
comparing the precession data with the CBED values 
for the h00 and hhO rows, a value for the thickness was 
established. An iteration procedure based on the so- 
called Bethe potentials was then used for determination 
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Fig. 10. Fourier projections onto the directions (a) [010] and (b) [110] 

calculated from the CBED structure factors. Arbitrary units. The 
vertical bars indicate projected atom positions from the structure 
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Fig. 11. Fourier projections along [001]. (a) Calculated from CBED 

structure factors plus other Uhko from precession data with signs 
from model; (b) calculated from the dynamically corrected Uhko; (C) 
difference Fourier between (b) and 86 projected atoms, i.e. without 
A18, AI9 and All0. 
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Table 5. Preliminary atom coordinates 

Position x y z 

Fel 8(i) 0.180 0.180 0.575 
Fe2/A1 8(i) 0.181 0.181 0.275 
Fe3/A1 8(i) 0.183 0.183 0.875 
A14 16(j) 0.325 0.033 0.076 
A15 16(j) 0.319 0.045 0.373 
AI6 16(j) 0.321 0.041 0.775 
AI7 4(e) 0.000 0.000 0.074 
AI8 8(i) 0.22 0.22 0.982 
A19 8(i) 0.22 0.22 0.168 
All0 8(g) 0.500 0.220 0.000 
A.lll 4(e) 0.000 0.000 0.35 
All2 4(e) 0.000 0.000 0.21 
All3 2(b) 0.000 0.000 0.500 

o f  the Fourier potentials Uh~ from the precession 
intensities and the known Uhoo and Uhho. This proce- 
dure was applied for the four most likely sign combi- 
nations, as i d6rived from inequalities. From the 
corrected pot\entials thus obtained, a new [001] Fourier 
projection was calculated (Fig. l lb ) .  A difference 
Fourier map for this projection (Fig. l l c )  was 
constructed as the difference between Fig. l l ( b )  and a 
map that included 86 atoms which were taken to be well 
located in this projection, viz the three Fe and Fe/A1 
positions [8(i)] on the diagonal mirror, three AI in 
general positions [16(j)] and 14 atoms on the axis. 
Three eightfold A1 positions that were considered less 
certain had thus been left out: two on the diagonal 
mirror [8(i)] and one on the twofold horizontal axis 
[8(g)]. The most prominent features in the (x,y) 
difference map appeared at a position corresponding to 
8(g), i.e. (0.5, 0.22, 0) and at the 8(i) position with 
x = y -- 0.22. 

The z coordinates for some of the atoms appeared 
less certain from the maximum-entropy peak lists. 
These atom positions were adjusted in the z direction so 
as to give better atomic distances and at the same time 
somewhat  better fit to intensities in [100], [110], [001] 
and [111] projections. The resulting preliminary coor- 
dinates are listed in Table 5; the corresponding inter- 
atomic distances we re  satisfactory. It should also be 
noted that the corrected hk0 structure factors obtained 
by the correction procedure gave a substantially better 
fit to this model than had been obtained for the 
experimental precession data, see Table 6; the R value 
in hk0 v~as reduced from 0.46 to 0.34, before the 
adjustment of coordinates, which reduced R further, to 
0.30. By using the uncorrected F's,  corresponding 
improvements of about 0.05 were obtained in all major 
projections. 

At this stage, one could conclude with the structure 
model as a satisfactory result. Based on positions 
derived from direct methods and Fourier maps, the 
model produced chemically reasonable coordinations 
and distances and might be the best that could be 
obtained by essentially kinematical interpretation of the 

Table 6. Structure factors IFhkol: Fcalc from the structure 
model; Fob s = Ihk t (precession data) and Fcorr from the 

correction procedure 

hkl Fobs (precession) f~l  ¢ (model) Fco~ 

110 0.00625 0.00190 0.00290 
200 0.01101 0.01160 0.01191 
220 0.00813 0.00494 0.00199 
310 0.00811 0.00804 0.00662 
330 0.01558 0.03325 0.03872 
400 0.01058 0.01344 0.01592 
420 0.00313 0.00219 0.00132 
440 0.00522 0.00570 0.00750 
510 0.00253 0.00144 0.00323 
530 0.01035 0.00781 0.00580 
550 0.01093 0.00655 0.00773 
600 0.01301 0.01519 0.01275 
620 0.00187 0.00206 0.00149 
640 0.00145 0.00266 0.00351 
660 0.00813 0.00642 0.00226 
710, 0.00601 0.00245 0.00209 
730~ 0.00370 0.00450 0.00209 
750,  " 0.00142 0.00016 0.00069 
770 0.00207 0.00389 0.00158 
800 0.00869 0.00794 0.00653 
820 0.00779 0.00345 0.00518 
840 0.00063 0.00191 0.00310 
860 0.00680 0.00344 0.00490 
910 0.00085 0.00301 0.00188 
930 0.00396 0.00351 0.00297 
950 0.00095 0.00131 0.00331 
970 0.00066 0.00016 0.00192 
10,0,0 0.00214 0.00278 0.00356 
10,2,0 0.00226 0.00124 0.00147 
10,4,0 0.00115 0.00237 0.00038 

Table 7. Atom coordinates from least-squares refinement 

x y Z Ull (,~2) 

Fel 0.1838 (10) 0.1838 (10) 0.5792 (4) 0.00663 
Fe2 0.1740 (13) 0.1740 (13) 0.2750 (6) 0.02008 
Fe3/A1 0.183 (2) 0.183 (2) 0.8716 (9) 0.03534 
All 0.337 (2) 0.031 (2) 0.0729 (6) 0.00948 
A12 0.295 (3) 0.044 (3) 0.3657 (9) 0.02409 
A13 0.295 (2) 0.044 (2) 0.7729 (8) 0.01783 
A14 0.00000 0.000 0.0748 (11) 0.00627 
A15 0.215 (3) 0.215 (3) 0.9793 (14) 0.02891 
AI6 0.233 (4) 0.233 (4) 0.173 (2) 0.06220 
A18 0.500 0.197 (4) 0.00000 0.02748 
A19 0.000 0.000 0.3488 (10) 0.00001 
All0 0.000 0.000 0.211 (3) 0.05570 
Al l l  0.000 0.000 0.50000 0.00001 

present intensity data. However, it was decided to try a 
three-dimensional refinement of the model. The 
SHELXL97 program (Sheldrick, 1997) was applied to 
the complete set of 598 intensities. A very poor fit to the 
intensities was obtained, as measured by WR2, which 
was reduced only from 0.797 to 0.758, with R1 -- 0.42. 
The shifts in atom positions from the model (Table 7) 
were quite small, viz less than 0.25 A; the resulting 

in tera tomic  distances were indeed reasonable, see Table 
8. The refined coordinates are therefore quoted as the' 
final result for a structure with 110 atoms, including 
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Table 8. Interatomic distances in A,  < 31 

FeI--AI4 x2 2 . 5 3  A14--AI4 2.93 
Fel--AI5 x2 2 . 5 3  A14--A15 2.73 
Fel --A18 2.50 A14--AI5 2.69 
Fel --A19 2.29 AI4--AI7 2.99 
Fel- -Al l0  x2 2.58 AI4--AI8 2.81 
Fel - -Al l l  2.77 AI4--AI8 2.68 
Fe1--A113 2.86 AI4--AI9 2.96 
Fe2--Fe3/AI 2 . 7 5  AI4--AI10 2.59 
2Fe--A15 x2 2 . 5 1  AI4--AI10 2.93 
Fe2--AI6 x2 2 . 4 3  A15--A16 3.09 
Fe2--A16 x2 2 . 5 1  A15--A16 2.84 
Fe2--A19 2 . 3 1  A15--A19 2.88 
Fe2--A111 2.70 A15--A111 2.93 
Fe2-- A112 2.58 A16--A16 x2 2.66 
Fe3/AI--A14 x2 2.62 A16--AI9 2.93 
Fe3/A1--A15 x2 2 . 4 3  A16--A19 2.76 
Fe3/A1-- A16 x2 2.65 A16--Al12 2.66 
Fe3/A1--A17 2.54 AI7--A18 x2 2.93 
Fe3/A1--A18 2.36 A17--A112 2.94 
Fe3/AI--AI12 2.90 AI8--AI10 ×2 2.56 

AI9--AI12 3.02 
AI10--AI13 2.68 
AI l l - -Al l2  2.98 

20-21 Fe atoms which are distributed on three eightfold 
positions as indicated. Attempts to refine occupation 
numbers failed. This is often a difficult process and 
becomes very uncertain when dynamical effects are 
large. 

6. Discuss ion  

It may be noted that the structure model presented here 
implies some disorder through the statistical distribu- 
tion of Fe/A1 on at least one of the Fe positions in the 
model. There are other indications of disorder or faults 
as well: Skjerpe (1988) noted extensive faults on (110); 
in the present study, we observed faults or modulations 
also on (001), as revealed by the c* rows in several of 
the precession patterns reproduced in Fig. 5, especially 
Fig. 5(c). These features should be borne in mind in a 
discussion of the structure and model and its accuracy. 
We have formulated the above AlmFe structure model 
as a network of All0  polyhedra around the Fe positions 
that were first deduced from Patterson maps and then 
established by the direct-method maximum-entropy 
calculations. The polyhedra share edges and corners, 

' like the similar polyhedra in A16Fe (Walford, 1965). 
Tenfold coordination of A1 around Fe is found also in 
mll3Fe4 (Black, 1955), fl-Ala.sFeSi (Rcmming et al., 
1994) and in the hexagonal c~-A1FeSi (Corby & Black, 
1977). A different representation of the structure is 
shown in Fig. 12: by two different double layers normal 
to the c axis, viz a layer (I) at levels z = 0 and z -- 0.075 
and another (II) at z -  0.150 and 0.225. The layers 
repeat at 0.275 and 0.350 (II) and at 0.425 and 0.50 (I) 
etc. and are seen to form a distorted CsCl/b.c.c.-type 
network with 20 Fe and 90 A1 atoms and 16 vacancies. 
From this description, the A l m F e  structure can be 
regarded as intermediate between the CsCl-type 

arrangement of iron and aluminium found around the 
FeA1 composition and the tenfold coordination around 
Fe in the stable intermetaUic phases in the Al-rich end 
of the A1-Fe system, in particular the nearly stable 
A16Fe. The role of vacancies in forming the tenfold 
coordination polyhedra from a CsCl-type cube is illu- 
strated in Fig. 13. By adding AI on two of the cube faces 
or by removing an atom from one cube corner and 
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Fig. 12. Two double distorted CsC1/b.c.c. layers (a) around z = 0 

(open symbols) and z = 0.075 (filled symbols), and (b) around 
z = 0.15 (open) and z----0.225 (filled). Fe are small, Al large, 
squares vacant. 
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adding A1 on three faces, one obtains the Fel  and Fe2 
polyhedra in the present model by only slight distor- 
tions of the polyhedron. By removing two A1 a toms  
from a cube edge and adding A1 atoms on four faces, 
one obtains a further polyhedron which is close to 
A16Mn. It should be mentioned that Skjerpe (1988) 
suggested a CsCl-like arrangement around iron in his 
study of the phase. Fig. 13 may suggest that the two 8(i) 
A1 positions, 8 and 9, could be replaced by indicated 
'vacancy' positions. This would lead to the same types 
of coordination polyhedra around Fe but interchanged 
between the different Fe positions. We have no direct 
evidence of this particular kind of disorder, which could 
be connected with the modulations along the c axis 
and/or  the Fe/A1 disorder. From such considerations, 
one should regard the present structure as an average 
structure, which may contain statistical elements in 
addition to the Fe/A1 occupation indicated in Table 6. 

It should be apparent from the present study that a 
structure model for AlmFe could only be derived from 
three-dimensional intensity information and that such 
information can be collected by electron diffraction 
even from crystal specimens of irregular shape and 
moderate thickness. The precession technique by 
Vincent & Midgley (1994) was found to be a substantial 
improvement over selected-area spot patterns by 
reducing the effects of dynamical scattering on the 

() 

Fig. 13. Coordination polyhedra around Fel (top) • and Fe2 (bottom) 
shown to the right can be formed from the CsCl-type units shown 
to the left. Fe atoms are shown as filled circles, A1 atoms as open 
circles. The squares are vacancies referred to CsCI. 

intensity data. Although appreciable dynamical effects 
remained, a structure solution could be obtained on the 
basis of kinematical scattering calculations and proce- 
dures taken from X-ray crystallography. An important 
conclusion seems to be that the phases derived by the 
direct-method procedures are quite robust against 
dynamical scattering effects. The reason behind this and 
other sucessful structure determinations based on l 
kinematical interpretation of intensit ies (see e.g. Zou, 
1995) may be that the kind of statistical relations that 
form the basis for direct methods in crystallography are 
to some extent preserved also under the condition of 
dynamical scattering. Some recent theoretical studies 
(Tivol, 1995; Peng & Wang, 1994) point in this direction, 
as does the channelling argument presented by Van 
Dyck & Op de Beeck (1996). The comparison with the 
CBED results of Cheng et al. (1996) and the dynamical 
corrections applied here lends further support to this 
conclusion. 

Refinement is a different matter. Sucessful two- 
dimensional refinements based on electron diffraction 
data collected from thin crystals in projection have been 
shown by Weirich et al. (1996), assuming kinematical 
scattering and by Zandbergen et al. (1995) using 
dynamical scattering calculations. The present structure 
needed three-dimensional refinement from data that 
were obtained by integrations, from crystal that are 
quite thick, ca 1000A. The dynamical corrections 
derived for the hkO reflections were appreciable. This is 
seen as the main reason for the poor fit to intensities 
that was obtained in the present refinement. The very 
reasonable result in terms of coordinates and distances 
may be associated with the fact that the precession 
intensities were collected by integrations through many 
different diffraction conditions. Ideally, structure 
refinement should include some kind of dynamical 
calculation also for data collected in the present kind of 
experiment.  The development of procedures for this 
sort of dynamical refinement remains an important task, 
together with the improvement in the experimental 
procedures that are now possible, e.g. by means of 
energy filtering and better detection media, e.g. imaging 
plates or slow-scan CCD cameras. When these 
improvements are introduced, and procedures for 
combination with CBED-based profile measurements 
are developed further, it seems to us that structure 
determination based on quantitative electron diffrac- 
tion/high-resolution electron microscopy will have a 
wide field of application, even in cases where three- 
dimensional data are required and crystals are not ve ry  
thin. 
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